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1: Executive Summary

Fatigue
The safety factor for fatigue is 1.374, showing that the shaft stays under the endurance limit.

Shafts / Combined Loading
The safety factor for combined loading is 1.65. Safety factor for Goodman criteria is 2.387. Safety Factor for
Langer Criteria is 3.829. This shows that the shaft will not fail, and that Goodman criteria is of most concern.

Springs
The static factor of safety for the compression spring is 1.98, showing that the spring will not fail. The
dynamic safety factor was not computed due to the spring being in a static setting.

Power Screws
The safety factor for raising the screw is 1.1404, and the safety factor for lowering the screw is .6908, showing
that the screw can accidentally be lowered while in operation.

Gears
The safety factor for bending is 1.4344, while the safety factor for wear is 1.1914, showing that the gear will
not fail under either condition, but that wear is of more concern.

Tabular Results

Factor of Safety Result
Endurance Limit 1.374
Combined Loading 1.65
Goodman Criteria 2.387
Langer Criteria 3.829
Static Spring 1.98

Raising Power Screw 1.1404
Lowering Power Screw .6908

Gear Bending 1.4344
Gear Wear 1.1914

2: Introduction

In this project, both dynamic failure methods and machine elements are analyzed on a CR Clarke injection
molder. In particular, the dynamic failure methods studied were fatigue and combined loading, and the
machine elements analyzed were springs, power screws, and gears. All analysis done within this project is to
determine the operational safety of the injection molder under steady and persistent use. This is explicitly
conducted through the determination of factors of safety that determine whether the CR Clarke injection
molder will fail under certain criteria.

As opposed to Project 1, this project focuses on a more uncertain object in which key assumptions need
to be made to progress with analysis. This resembles more closely the conditions seen in engineering practice,
where definitions and failure criteria are up to the engineer to decide and are not given explicitly. Therefore,
failure criteria in this project are often times not defined by a single property, like yielding is to the yield
strength, but rather defined by a series of questions that the engineer must ask themselves before determining
the failure criteria.



3: Analysis

Disclaimer: I did this report before it was made apparent to me that the following calculations are not
necessary. I left all calculations in to not waste all the work I did on this project over Thanksgiving break.

3.1 Fatigue

Although the use of the CR Clarke injection molder being studied is not in a high-cycle environment, the
machine was designed with the ability to be used in that type of environment. Therefore, fatigue was analyzed.

Assuming that the injection molder crank is introduced to a load of 50 lb and the crank has a radius of
8.5 in, the torque being created during operation is 425 lb·in . This creates a torsion within the inner shaft of
magnitude τ = 16T

πD3 = 16·425
π·.6253 = 8866 psi. This torsion will have localized maximums near notches in the shaft;

therefore, these concentrations must be accounted for. Using the graphs in the appendix, characteristics to
determine the stress concentration factor kfs can be found. Using the values extrapolated in the appendix,
the stress concentration factor can be found. kfs = 1+ qs(kts − 1) = 1+ .6(2− 1) = 1.6. Applying this factor
to the torsion found earlier leads to a maximum torsion of τmax = kfsτ = 1.6 · 8866 = 14185 psi.

We must relate this value to the endurance limit of the shaft, which can be found using Marin factor anal-
ysis. Marin factors for a machined shaft of diameter .625 in, at room temperature with 90% reliability
are as follows. ka = a(Sut)

b = 2.70(100)−.265 = .7968 kb = .879 · d−.107 = .879(.625)−.107 = .9240 kc =
.59 (torsion) kd = 1 (room-temp) ke = .897 (90% reliability.). Finally, assuming the Mischke correla-
tion holds, Se can be defined as half the ultimate strength, which is 50 kpsi. Using this, we can define
S ′
e = ka · kb · kc · kd · ke · Se = .7958(.9240)(.59)(1)(.897)(50 kpsi) = 19.490 kpsi.

Finally, a safety factor for the endurance limit can be defined as

η =
S ′
e

τmax

=
19.490

14.185
= 1.374

3.2 Shafts / Combined Loading

Every time that the CR Clarke injection molder is used, it is exposed to constant torsion and alternating
bending as a result of the crank being used. Because of this, the shaft is exposed to combined loading. The
magnitude of the torsion is the same as what was found during fatigue. The alternating bending moment has
a magnitude of 51.5 lb·in and a stress of σb =

32M
πd3

= 32(51.5)
π(.625)3

= 2149 psi.

It is important to note that due to the prevalence of notches in the shafts, the values of torsion and bending
will be amplified. The torsional stress concentration has been previously solved for, and the bending stress
concentration factor can be defined as kf = 1 + q(kt − 1) = 1 + .55(3.75 − 1) = 2.5125, where kt and q are
found using tables found in the appendix.

Using this, a safety factor for combined loading can be expressed as follows:

η = d3
[
16

π

(
1

Se

{4(kfMa)
2 + 3(kfsTa)

2}1/2 + 1

Sy

{4(kfMm)
2 + 3(kfsTm)

2}1/2
)]−1

η = .6253
[
16

π

(
1

19490
{4(2.5125 · 51.5)2 + 3(0)2}1/2 + 1

75000
{4(0)2 + 3(1.6 · 425)2}1/2

)]−1

= 1.65

It is also important to contextualize which loading condition is more severe. To do so, we first have to define
σa = (2.5125 · 2149) = 5399.4 psi and σm = (1.6 · 8866) = 14185 psi. Using these new parameters, we can



define factors of safety for both Goodman (fatigue) and Langer (yielding) criteria.

ηG =

(
σa

Se

+
σm

Sut

)−1

=

(
5.399

19.49
+

14.185

100

)−1

= 2.387, ηL =

(
σa

Sy

+
σm

Sy

)−1

=

(
5.399

75
+

14.185

75

)−1

= 3.829

3.3 Springs

The CR Clarke injection molder relies on two compression springs to return the injection head from the mold.
An analysis of compression screw failure criteria was conducted, with results shown below.

Spring Material (Pass): Music Wire, Sut =
A
dm

= 201
.10.145

= 280.67 kpsi
Music wire is the most widely used spring material, and it is available in diameters ranging from .005 in to
.125 in. The diameter for this spring falls in that range.

Stability (Pass): Lo < 2.63D
α
, Lo = 3 in, D = 1 in, α = .5, 2.63D

α
= 2.63 1

.5
= 5.26, 3 < 5.26

It should be noted that this failure will be mitigated by a shaft being placed in the middle of the spring.

Spring Index Limit (Pass): 4 < C < 12, C = D
d
= 1

.1
= 10, 4 < 10 < 12

Active turn limit (Fail): 3 ≤ NA ≤ 15, NA = 17 (from problem statement), 3 ≮ 17 ≮ 15

Min Operating Length (Pass): Lmin > LS, LS = d(NT +1) = .1(19+1) = 2 in, Lmin = 3 in, 3 > 2

Critical Frequency (Pass): fn > Fapplied, fn = 1
2

√
kg
W
, k = d4G

8D3NA
= .14(10·106)

8(1)3(17)
= 7.35 N

m
,

W = π2d2DNaγ
4

= (π)2(.1)2(1)(17)(.283)
4

= .1187 lb, fn = 1
2

√
kg
W

= 1
2

√
7.35·386
.1187

= 77.3 Hz

As long as the applied frequency is under 77.3
20

= 3.865 Hz, the spring will not fail under frequency criteria.

Static Safety Factor (Pass): η > 1.2, η = Ssy

τmax
, Ssy = .45Sut = .45(280.67) = 126.30 kpsi,

τmax = kB
(
8FD
πd3

)
, kB = 4C+2

4C−3
= 4(10)+2

4(10)−3
= 1.135, Fmax = kxmax = 7.35 · 3 = 22.05 lb, τmax = kB

(
8FD
πd3

)
=

1.135 · 8·22.05·1
π·.13 = 63750 psi, η = Ssy

τmax
= 126.30

63.750
= 1.98, 1.98 > 1.2

Static failure criteria was used because the CR Clarke injection molder is not in a dynamic setting.

3.4 Power Screws

A power screw is used to clamp the two ends of the mold together. Because of this, it is vital to determine
whether the power screw is self-locking or not so that the mold does not open while injection is happening.
Furthermore, it is important for the mold to not be opened accidentally while in operation. Because of this,
a safety factor for accidentally opening the mold was analyzed.

Self-Locking Criteria: π · f · dm > ℓ, π · f · dm = π · .1 · .45 = .1413, ℓ = .077, .1413 > .077
Therefore, the power screw is self-locking.

Power-Screw Factor of Safety:
Assuming the force that the power screw resists is 8150 lb, the torque to raise and lower the power screw are:

Torque to Raise = Fdm
2

(
ℓ+πfdmsec(α)
πdm−fℓsec(α)

)
+ Ffcdc

2
= 8150·.45

2

(
.077+π(.10)(.45)sec(28)
π(.45)−.10(.077)sec(28)

)
+ 8150(.10)(.5)

2
= 513.22 lb · in

Torque to Lower = fdm
2

(
πfdmsec(α)−ℓ
πdm+fℓsec(α)

)
+ Ffcdc

2
= 8150·.45

2

(
π(.10)(.45)sec(28)−.077
π(.45)+.10(.077)sec(28)

)
+ 8150(.10)(.5)

2
= 310.88 lb · in

Assuming the crank for the power screw has a radius of 4.5 in, the forces to move the power screw are:
Force to Raise: T

r
= 513.22

4.5
= 114.04 lb

Force to Lower: T
r
= 310.88

4.5
= 69.08 lb



Assuming a human can supply 100 lb of force to the crank, factors of safety can be defined:

ηraise =
Fto move

Fhuman

=
114.04

100
= 1.1404, ηlower =

Fto move

Fhuman

=
69.08

100
= .6908

3.5 Gears

A rack and pinyon gearset is used to lower the injection head into the mold. Based on geometry, the pinyon
is often the gear that will fail in these gearsets, so the pinyon was analyzed for the two gear tooth failure
methods: bending and wear. The results are seen below:

Maximum Allowable Stress from Bending: σb =
STYN

SFKTKR
= 42(1.2218)

1(1)(.85)
= 60.37 kpsi

ST = 42 See appendix graph
YN = 1.2218 See appendix graph
SF = 1 Given in problem statement
KT = 1 Given in problem statement
KR = .85 See appendix table

Maximum Allowable Force from Bending: Wb =
σb·F ·J

KoKvKSPdKmKb
= 60.37(.8)(.27)

1(1.044)(1)(12.8)(1)(1)
= 975.408 lb

Ko = 1 See Appendix Table

Kv =
(

A+
√
V

A

)B

=
(

85.28+
√
60

85.28

).5

= 1.044, B = .25(12−Qv) = .5, A = 50 + 56(1−B)2/3 = 85.28

KS = 1 Given in problem statement
Km = 1 Given in problem statement
Kb = 1 Given in problem statement
J = .27 See appendix graph
F = .8 Given in problem statement
Pd = 12.8 Given in problem statement

Maximum Allowable Stress from Wear: σc =
SC

SH

ZNCH

KTKR
= 121.55

1
1.166(1)
1(.85)

= 166.7952 kpsi
SC = 1 See Appendix graph
ZN = 1 See appendix graph
CH = 1 Given in problem statement
SH = 1 Given in problem statement

Maximum Allowable Force from Wear: Wc = (− σc

Cp
)2 dpFI

KoKvKSKmCF
=

(
−166795.2

2300

)2 1.25(.8)(.161)
1(1.044)(1)(1)(1)

= 810.2

dp = 1.25 Given in problem statement
I = .161 Given in problem statement
CF = 1 Given in problem statement

Safety Factors:
The user pushes the capstain with 50 lb of force. Given that the capstain has a radius of 8.5 in, the torque
being applied is 50 lb ·8.5 in = 425 lb·in. The torque is transmitted over the pitch radius of the pinyon gear,
leading to a force of 425

1.25/2
= 680 lb being exerted on the pinyon. Safety factors can be defined as follows:

ηbending =
Wb

Fon pinyon

=
975.408

680
= 1.4344, ηwear =

Wc

Fon pinyon

=
810.2

680
= 1.1914

It should be noted that in the homework P2 submissions, I forgot to find the pitch radius and instead found
the force transmitted to the pinion using purely the pitch diameter. The calculations above have corrected
this mistake.



4: Discussion

4.1 Discussion of Fatigue Criteria

Firstly, it is important to note that while the CR Clarke injection molder currently in Bray is not in a high-
cycle environment, many injection molders are. For instance, Lego uses injection molding to produce their
bricks, so having injection molders that can withstand fatigue is paramount. That being said, if the machine
is to be used in a heavy work environment, as described earlier, it is reasonable to require that the maximum
load placed on the shaft be under the shaft’s endurance limit, such that it can withstand infinitely many
cycles. Therefore, the safety factor was defined with that in mind, and as can be seen from the analysis, the
maximum load that the shaft experiences is below the endurance limit.

If the buffer between the endurance limit and the maximum load needs to be increased, the best way to
achieve this is to increase the diameter of the shaft, as this will decrease the torsion that acts on the shaft. It
is also important to note that this will also decrease the value of the Marin factor kb, which, in turn, decreases
the endurance limit. However, the rate at which the torsion decreases with a larger diameter far exceeds the
rate at which kb decreases with the same increased diameter. Another design choice is changing the material
to one with a higher Sut. Increasing the ultimate strength dramatically increases the value of Se, which
increases the endurance limit, thus creating a buffer between it and the maximum load. This, once again,
comes at the cost of a decreasing Marin factor, as ka decreases with increasing Sut. Similar to increasing the
diameter, the benefit of a dramatically increasing Se mitigates the impact of a slightly decreasing ka.

4.2 Discussion of Shafts / Combined Loading Criteria

Because there is a combination of loading types in the shaft when the capstan is pulled, one type of loading
affects the performance of the shaft more dramatically. In this case, it can be seen that the Goodman (or
fatigue) criteria presents an increased risk of failure compared to the Langer (or yielding) criteria. This is
evident in a comparison of their safety factors, as the safety factor for the Goodman criteria is substantially
lower than that of the Langer criteria. Therefore, design changes for fatigue are of the most concern.

When evaluating the factor of safety for the Goodman criteria, it can be noted that smaller ratios between
the load experienced and the maximum allowable load correspond to higher safety factors. Therefore, based
on the ratios shown in the analysis of the factor of safety, it can be deduced that the ratio of σa

S′
e
is the limiting

factor. Ways of increasing the endurance limit, as described in the previous section, can be explored, or
methods of decreasing σa can be investigated. Assuming the moment placed on the shaft must remain the
same, increasing the diameter of the shaft will once again increase the safety factor, as the bending stress is
inversely related to the diameter cubed.

It should also be noted that both design modifications proposed for improving the Goodman criteria also
improve the combined loading condition. This can be clearly seen from the combined loading factor of safety
being proportional to the diameter cubed and linearly proportional to the endurance limit ( 1

S′
e
)−1 = S ′

e.

4.3 Discussion of Spring Criteria

There are many definitions of failure when considering a compression spring. The number of definitions, how-
ever, can be reduced if the spring is only subjected to a static load. This was the main assumption used when
analyzing the compression spring in the injection molder. This somewhat contradicts the previous statement
that injection molders experience high-cycle environments. However, for the purposes of the springs specifi-
cally used on a hand-cranked injection molder, as seen in the CR Clarke injection molder, it is fair to assume
that the machine does not operate in a dynamic setting. This eliminates the need for a dynamic factor of
safety. It also eliminates the threat of the critical frequency criteria, as a human is incapable of operating the



machine at 3.865 times per second while successfully molding a part.

With that in mind, the compression spring fails by definition in one criterion: the active turns criterion
(3 ≤ NA ≤ 15). While technically this criterion amounts to failure by definition, the designers of the CR
Clarke injection molder have practically eliminated the failure by placing a rod in the middle of the spring.
The main concern with the active turn failure criterion is that the spring will buckle due to its slenderness.
This is why the rod in the middle of the spring is so important, as it ’catches’ the spring if it were to buckle,
effectively making the spring perfectly functional. Therefore, this criterion is not of concern.

4.4 Discussion of Power Screw Criteria

The power screw is crucial to the overall functionality of the injection molder, as it is responsible for keeping
the mold in place while forces from the injection process are exerted on it. This key functionality is encap-
sulated in the ’self-locking’ property that the power screw exhibits, ensuring that the screw stays in place
unless acted upon by an external force. Unfortunately, there is an easy way to act on the power screw, leading
to the CR Clarke injection molder’s most significant failure: a human accidentally being able to move the
power screw, and in turn, the mold. It should be noted that, assuming a human can only exert 100 lb, the
power screw can only be lowered, not raised, while in operation. However, the magnitude of its failure is quite
dramatic.

There are two methods to improve the operational safety of the power screw. The simplest is decreasing
the radius of the power screw handle. Decreasing this radius reduces the amount of torque that a human
can provide. However, the radius would have to decrease quite dramatically. To ensure that the power screw
does not fail, the radius of the handle must be reduced from 4.5 in to 3.1 in. This may defeat the ergonomic
effectiveness of the handle, making it undesirable. The other method of ensuring operational safety is by
increasing the torque needed to lower the screw. From the equation for torque, it can be seen that, in the
case of lowering the screw specifically, the collar friction provides more resistance than the friction from the
threads. Therefore, increasing the diameter of the collar can further compound this resistance. By increasing
the collar diameter to 1 in, the threat of failure can be eliminated entirely (calculations can be found in the
appendix).

4.5 Discussion of Gear Criteria

In rack and pinion setups, it is often seen that the pinion fails far before the rack due to its geometry; therefore,
the pinion was evaluated for failure instead of the rack. From the analysis of the two main failure modes of
gear teeth—bending stress and wear—it can be seen that the pinion is not a concern for failure, as both failure
modes boast safety factors greater than one. It can still be noted that wear is more of a concern than bending.

To create more buffer room from failure due to wear, increasing the pitch diameter can lead to favorable
results, as increasing it slightly (from 1.25 in to 1.5 in) can make the factor of safety for wear match that of
bending. Increasing the size of the gear tooth face will also positively impact the safety factor for both wear
and bending, leading to an improvement in both gear tooth safety criteria.

Once again, these safety factors do not indicate failure, so changes to the gear setup are not as pressing
as other design changes.



5: Appendix

5.1 Graphs for 3.1 Fatigue

Extrapolating yields values of kts = 2.0, and qs = .6

5.2 Graphs for 3.2 Shafts / Combined Loading

Extrapolating yields values of kt = 3.75, and q = .55



Plot showing Goodman and Langer criteria with Load Line

5.3 Calculation for Power Screw Factor of Safety

Assuming that the collar of the power screw is increased to 1 inch, yields torques of:

Torque to Raise = Fdm
2

(
ℓ+πfdmsec(α)
πdm−fℓsec(α)

)
+ Ffcdc

2
= 8150·.45

2

(
.077+π(.10)(.45)sec(28)
π(.45)−.10(.077)sec(28)

)
+ 8150(.10)(1)

2
= 716.97 lb · in

Torque to Lower = fdm
2

(
πfdmsec(α)−ℓ
πdm+fℓsec(α)

)
+ Ffcdc

2
= 8150·.45

2

(
π(.10)(.45)sec(28)−.077
π(.45)+.10(.077)sec(28)

)
+ 8150(.10)(1)

2
= 514.65 lb · in

Which increases the forces required to move. These forces are given below assuming that the crank radius
stays the same. Force to Raise: T

r
= 716.97

4.5
= 159.32 lb

Force to Lower: T
r
= 514.65

4.5
= 114.36 lb

Assuming a human can supply 100 lb of force to the crank, new factors of safety can be defined:

ηraise =
Fto move

Fhuman

=
159.32

100
= 1.5932, ηlower =

Fto move

Fhuman

=
114.36

100
= 1.1436

5.4 Graphs for 3.5 Gears

5.4.1 Graphs and Tables for Allowable Bending Stress

Left - ST = 42 —— Middle - Stress Cycle Factor YN = 1.2218 —— Right - Reliability Factor KR = .85



5.4.2 Graphs and Tables for Allowable Bending Force

Left - Overload factor Ko = 1 —— Right - Geometry factor J = .27

5.4.3 Graphs and Tables for Allowable Wear Stress

Left - SC = 121.55 —— Right - Stress Cycle Factor YN = 1.166


